



(Prague, 30/Sep - 01/Oct 2019)

### New geophysical and geochemical data at the archaeological site of Zaldua (Auritz/Burguete, Navarre)

by Ekhine GARCIA-GARCIA Carmen GARCIA-CUENCA, Javier ARNEDILLO, Knesiia BONDAR, Philippe DE SMEDT, Eneko IRIARTE, Roger SALA, Armin SCHMIDT, Clare WILSON

Topic 2: Integrated approaches combining geophysics and soil science at archaeological sites



### **The First SAGA Training School**

Introduction to the Use of Geophysical & Soil Science Methods in Archaeology

Roman site of Zaldua

(Auritz/Burguete, Navarre)

29 July – 2 August 2019





- 21 Trainees (12 affiliation countries)
  - 11 Trainers (6 affiliation countries)

Fundaments of routine geophysical and soil science methods used in archaeological investigations

Theoretical and Hands-on sessions





### New data acquired during the TS















□ To show the new acquired data.

Contents:

1. Introduction to the site

2. The new data acquired during the TS

3. Results

4. Conclusions









Located in a natural pass in the western part of the Pyrenees

Discovered in the context of a larger project

Related to a roman road

Investigated mainly with geophysics





2012 Archaeological trenches

2013 Magnetic survey

2014 Core survey

2015 GPR / RES surveys

2015-2019 Excavations

#### .Bartington Grad 601-dual fluxgate gradiometer. 18ha at 0.25 x 0.5m resolution. Processed data



Garcia-Garcia et al. 2016. Magnetometer Survey at the Newly-discovered Roman City of Auritz/Burguete (Navarre). Results and Preliminary Archaeological Interpretation. Archaeological Prospection 23(4): 243-256.



- In the main area (circa 4.5 ha)
- \* Good magnetic contrast
- \* Organized along the road
- \* No clear limits







### Other areas with poor magnetic contrast







### Complementary geophysical surveys





### Geoarchaeological core survey



## The data acquired during the TS

- 1. Electromagnetic Induction Survey
- 2. Electrical resistivity imaging /
- 3. Earth resistance survey
- 4. Ground Penetrating Radar
- 5. Geoarchaeological core survey
- 6. Superficial magnetic susceptibility measurements
- 7. Geochemical analyses in open archaeological trench



## The data acquired during the TS

- 1. Electromagnetic Induction Survey
- 2. Electrical resistivity imaging
- 3. Earth resistance survey
- 4. Ground Penetrating Radar
- 5. Geoarchaeological core survey



- 6. Superficial magnetic susceptibility measurements.
- 7. Geochemical analyses in open archaeological trench





Superficial magnetic susceptibility crossing the site

KM-7 Satis Geo kappameter

100 measurements separated by 5m

3 measurements by position. Average taken as a final value





Divided into two segments:

From 130 to 250 m / From 250 to 435 m

Good correlation with gradiometer response map

but: enhanced values in northern fringe





### etic susceptibility over the site

- Divided into two segments:
  - From 130 to 250 m / From 250 to 435 m
- Good correlation with gradiometer response map
  - but: enhanced values in northern fringe



Measures made in the rocks of the excavation area

| Rock Material       | Mag Susceptibility (x10-3 SI) |  |  |  |  |  |  |  |  |
|---------------------|-------------------------------|--|--|--|--|--|--|--|--|
| Mudstone            | 0.18-0.35                     |  |  |  |  |  |  |  |  |
| Sandstone red       | 0.00-0.1                      |  |  |  |  |  |  |  |  |
| Sandstone black     | 0.24                          |  |  |  |  |  |  |  |  |
| Shale               | 0.01-0.19                     |  |  |  |  |  |  |  |  |
| Brick light yellow  | 0.24-0.63                     |  |  |  |  |  |  |  |  |
| Brick light reddish | 2.16-4.00                     |  |  |  |  |  |  |  |  |
| Brick red           | 6.41-7.39                     |  |  |  |  |  |  |  |  |









GPR RES





IDS Hi-mod 600MHz and 200MHz



RM15-Mpx15 0.5m &1m







0.5m level.

IDS Hi-mod 600MHz and 200MHz



RM15-Mpx15 0.5m &1m



-7nT (blue()/ 9nT (white)

0.22.-0.39m (v=7.3 cm/ns)





IDS Hi-mod 600MHz and 200MHz



RM15-Mpx15 0.5m &1m



-7nT (blue()/ 9nT (white)

0.55-0.72m (v=7.3 cm/ns)

0.5m level.









Magnetic response map. + GPR

In Phase MAG susceptibility – PRP (0.5m depth)





Magnetic response map. + RES survey (twin, 0.5m)

Electrical conductivity – PRP (0.5m depth)

Electrical conductivity – HCP (1.5m depth)





Magnetic response map. + RES survey (twin, 0.5m)

Electrical conductivity – PRP (0.5m depth)

Electrical conductivity – HCP (1.5m depth)

















.GPR results. 0.50-0.64m (600MHz; v=7.3 cm/ns)

.GPR results. 1.07m-1.21m (600MHz; v=7.3 cm/ns)

635700

635700





Magnetic response map. -7nT (dark) / 9nt (white)





Magnetic response map. -7nT (dark) / 9nt (white)



In Phase MAG susceptibility – HCP (1m depth)



Electrical conductivity – PRP (0.5m depth)





Magnetic response map. -7nT (dark) / 9nt (white)



.GPR results. 1.07m-1.21m (600MHz; v=7.3 cm/ns)



Electrical conductivity – HCP (1.5m depth)





Magnetic response map. -7nT (dark) / 9nt (white)







- 1. Top layer
- 2. Mixed layer with several inclusions 11-12-16-17
- Black thin ashy layer
  5-9-14
- White mortar floor layer
  4-15
- 5. Black thin ashy layer 3-8-13
- 6. Brown silty layer 1-2





- 1. Top layer
- 2. Mixed layer with several inclusions 11-12-16-17
- Black thin ashy layer
  5-9-14
- White mortar floor layer
  4-15
- 5. Black thin ashy layer 3-8-13
- Brown silty layer
  1-2



| SAMPLE | Context | Sn    | Nb  | Zr    | Sr   | Rb   | As                                                                                                                                                                                                                                                              | Pb    | Zn    | Cu    | Fe      | Mn     | Cr    | v     | Ti     | Ва    | Са      | К       | AI      | Р      | Si       | Cl    | S      |
|--------|---------|-------|-----|-------|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|---------|--------|-------|-------|--------|-------|---------|---------|---------|--------|----------|-------|--------|
| saga9  | 3       | < LOD | 6.8 | 134.8 | 59.1 | 55.7 | < LOD                                                                                                                                                                                                                                                           | 392.6 | 88.9  | 61.2  | 20332.0 | 1708.6 | 82.6  | < LOD | 2167.2 | 372.4 | 29933.2 | 10976.4 | 29659.4 | 3252.9 | 126846.2 | < LOD | 470.9  |
| saga14 | 3       | 42.3  | 6.8 | 143.7 | 60.7 | 61.8 | < LOD                                                                                                                                                                                                                                                           | 768.0 | 80.0  | 118.5 | 20463.6 | 1567.8 | 54.0  | < LOD | 1713.7 | 469.3 | 16068.3 | 9274.1  | 27738.6 | 5768.1 | 124473.6 | < LOD | 785.8  |
| saga5  | 3       | 285.9 | 8.4 | 147.9 | 65.7 | 54.6 | < LOD                                                                                                                                                                                                                                                           | 578.8 | 103.4 | 173.9 | 19734.7 | 2077.6 | 62.6  | 145.6 | 2273.3 | 451.3 | 21887.2 | 10205.8 | 36058.5 | 5957.3 | 141886.7 | < LOD | 1436.4 |
|        |         |       |     |       |      |      |                                                                                                                                                                                                                                                                 |       |       |       |         |        |       |       |        |       |         |         |         |        |          |       |        |
| saga8  | 5       | < LOD | 3.9 | 87.0  | 52.8 | 44.6 | <lod< td=""><td>177.3</td><td>47.0</td><td>70.5</td><td>21055.3</td><td>4082.3</td><td>67.9</td><td>68.1</td><td>1447.5</td><td>433.8</td><td>19047.0</td><td>8159.0</td><td>26680.5</td><td>3282.8</td><td>108075.2</td><td>&lt; LOD</td><td>247.4</td></lod<> | 177.3 | 47.0  | 70.5  | 21055.3 | 4082.3 | 67.9  | 68.1  | 1447.5 | 433.8 | 19047.0 | 8159.0  | 26680.5 | 3282.8 | 108075.2 | < LOD | 247.4  |
| saga13 | 5       | < LOD | 5.9 | 95.4  | 56.3 | 69.0 | < LOD                                                                                                                                                                                                                                                           | 229.3 | 60.1  | 75.1  | 23663.8 | 3515.6 | < LOD | 113.2 | 1772.4 | 723.2 | 17581.1 | 10955.0 | 42788.9 | 3687.0 | 160453.1 | < LOD | 331.2  |
| saga3  | 5       | < LOD | 7.9 | 66.2  | 63.7 | 33.5 | < LOD                                                                                                                                                                                                                                                           | 178.7 | < LOD | 162.9 | 18421.8 | 4964.9 | < LOD | < LOD | 619.7  | 577.6 | 39585.6 | 2890.3  | 5731.7  | 1213.0 | 31051.8  | < LOD | 247.6  |



The application of new geophysical methods add additional information in some archaeological questions

□ Area 1: Confirmation of previous results

□ Area 2: Differences between the two occupied areas

The geochemical data of the open trench revealed strong differences in archaeological deposits not discernible by eye.