Magnetic property characterisation focusing on soil and archaeological materials.

Training school TS3 Prague, 29 – 31 March 2022

Dr. Simo Spassov Geophysical Centre of the Royal Meteorological Institute, Belgium

simo@meteo.be

Funded by the Horizon 2020 Framework Programme of the European Union • Properties of some magnetic minerals

• Formation of magnetic minerals

Magnetic characterisation methods

Examples

Element	Abundance (wt %)* in Earth's crust *Lutgens & Tarbuck 2000	Magnetic minerals	
		Magnetite	Fe ₃ O ₄
Oxygen	46.6	Maghaemite	γ–Fe ₂ O ₃
Silicon	27.7		
Aluminum	8.1	Haematite	$\alpha - Fe_2O_3$
Iron	5.0		
Calcium	3.6	Goethite	α-FeOOH
Sodium	2.8	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
Potassium	2.6		hex. Fe_9S_{10}
Magnesium	2.1		
All other	1.5	Greigite	Fe ₃ S ₄

Iron resides amongst the most abundant elements in the Earth's crust and forms in combination with oxygen and sulphur magnetic minerals which are omnipresent in our environment.

Electrons = moving electric charges

Free atoms

orbit + spin momenta

Solids

often only spin momenta

Ferromagnetic s.l. minerals

uncompensated spin momenta in overlapping orbits

e – elementary

n – main quantum number of Hydrogen, *s* – spin quantum number of e^{-} , *m* – mass of e^{-} , charge, \hbar – reduced Planck constant

Magnetite

ferrimagnetic

• Fe₃O₄

 $M_{S} = 480 \ kA/m$

 $T_{C} = 585 \ ^{\circ}\text{C}$

- T_V = between -163 and -153 °C
- H_c = between 10 and 80 mT (size dependent)
- (Soils)
- Inside bacteria
- Baked clays
- Combustion product
- Lacustrine/marine sediments

ferric iron Fe³⁺ at tetrahedral (A) and octahedral (B) sites

ferrous iron Fe²⁺ at octahedral site

oxygen anions

Magnetite Fe₃O₄

Superexchange

Magnetic minerals

Magnetite Fe³⁺[Fe³⁺Fe²⁺]O₄

Close packing of oxygen & iron

Superexchange

Magnetite Fe³⁺[Fe³⁺Fe²⁺]O₄

Oxygen 2p orbital overlaps with both 3d orbitals of Fe³⁺ and Fe²⁺

Superexchange

Magnetic minerals

Magnetite Fe³⁺[Fe³⁺Fe²⁺]O₄

Oxygen exchanges both outer 2p electrons with the iron ions

Superexchange

Magnetite Fe³⁺[Fe³⁺Fe²⁺]O₄

2 parallel spins → violation of Pauli principle

Superexchange

Magnetite Fe³⁺[Fe³⁺Fe²⁺]O₄

Solution: opposite spins of Fe- ions \rightarrow lattices with opposite magnetic moments

SAGA

TS 3, Prague, 29-31. III. 2022

Magnetic minerals

Magnetite Fe³⁺[Fe³⁺Fe²⁺]O₄

ferric iron Fe³⁺ at tetrahedral (A) and octahedral (B) sites

ferrous iron Fe²⁺ at octahedral site

oxygen anions

at tetrahedral sites, Fe³⁺ occurs only

at octahedral sites occur both, Fe³⁺ and Fe²⁺

whole crystal: spins of Fe³⁺ at A sites equal spins of Fe³⁺ at B sites -> resulting moment only from Fe²⁺

magnetic moments at A and B sites are unequal and antiparallel -> ferrimagnetism

4 uncompensated moments

 $4 \mu_B$

Magnetite Fe³⁺[Fe³⁺Fe²⁺]O₄

ferric iron Fe³⁺ at tetrahedral (A) and octahedral (B) sites

ferrous iron Fe²⁺ at octahedral site

oxygen anions

at tetrahedral sites, Fe³⁺ occurs only

at octahedral sites occur both, Fe³⁺ and Fe²⁺

whole crystal: spins of Fe³⁺ at A sites equal spins of Fe³⁺ at B sites -> resulting moment only from Fe²⁺

magnetic moments at A and B sites are unequal and antiparallel -> ferrimagnetism

5 uncompensated moments

 $4 \mu_B$

SAGA

Magnetite Fe³⁺[Fe³⁺Fe²⁺]O₄

ferric iron Fe³⁺ at tetrahedral (A) and octahedral (B) sites

ferrous iron Fe²⁺ at octahedral site

oxygen anions

at tetrahedral sites, Fe³⁺ occurs only

at octahedral sites occur both, Fe³⁺ and Fe²⁺

whole crystal: spins of Fe³⁺ at A sites equal spins of Fe³⁺ at B sites -> resulting moment only from Fe²⁺

magnetic moments at A and B sites are unequal and antiparallel -> ferrimagnetism

5 uncompensated moments

 $4 \mu_B$

Magnetite

• Fe₃O₄

 $M_{S} = 480 \ kA/m$

due to high thermal energy

loss of magnetic ordering

characteristic temperature for each mineral but depends on substitution degree

 $T_C = 585 \ ^{\circ}\text{C}$

 T_V = between -163 and -153 °C

- H_c = between 10 and 80 mT (size dependent)
- (Soils)
- Inside bacteria
- Baked clays
- Combustion product
- Lacustrine/marine sediments

Maghaemite

 γ -Fe₂O₃

$3.33 \mu_B$

ferrimagnetic

Oxidised magnetite

 $M_{S} = 380 \ kA/m$

 $T_C = 645 \ ^{\circ}\text{C}$ (depends on substitution)

 T_V = depending on oxidation degree

Metastable 250 – 750 °C Converts to haematite

- Soils
- Soil bacteria excretion
- Baked clays
- Lacustrine/marine sediments

Maghaemite

• γ-Fe₂O₃

Oxidation of 44 *nm* magnetite

at 30° and variable p_{O_2}

 $M_{S} = 380 \ kA/m$

 $T_C = 645 \ ^\circ \text{C}$ (depends on substitution)

 T_V = depending on oxidation degree

Metastable 250 - 750 °C Converts to haematite

- Soils
- Soil bacteria excretion
- Baked clays
- Lacustrine/marine sediments

<u>Haematite</u>

• α-Fe₂O₃

"antiferromagnetic"

 $M_{S} = 2.5 \ kA/m$

 $T_N = 680 - 690 \ ^{\circ}\text{C}$

- T_M = between -100 and 13 °C (size dependent)
- H_c size dependent
- Soils
- Baked clay
- Sediments

<u>Haematite</u>

• α-Fe₂O₃

• apparent antiparallel alignment of spins

 $M_{S} = 2.5 \ kA/m$

 $T_N = 680 - 690 \ ^{\circ}\text{C}$

- T_M = between -100 and 13 °C (size dependent)
- H_c size dependent
- Soils
- Baked clay
- Sediments

<u>Haematite</u>

• α-Fe₂O₃

• Imperfect antiparallel alignment of spins

 $M_{S} = 2.5 \ kA/m$

 $T_N = 680 - 690 \ ^{\circ}\text{C}$

- T_M = between -100 and 13 °C (size dependent)
- H_c size dependent
- Soils
- Baked clay
- Sediments

<u>Haematite</u>

α-Fe₂O₃

• Imperfect antiparallel alignment of spins

 $M_S = 2.5 \ kA/m$

 $T_N = 680 - 690 \ ^{\circ}\text{C}$

- T_M = between -100 and 13 °C (size dependent)
- H_c size dependent
- Soils
- Baked clay
- Sediments

Fe³⁺

Haematite

• α-Fe₂O₃

 $M_S = 2.5 \ kA/m$

 $T_N = 680 - 690 \ ^{\circ}\text{C}$

- T_M = between -100 and 13 °C (size dependent)
- H_c size dependent
- Soils
- Baked clay
- Sediments

- Imperfect antiparallel alignment of spins
- Holes in crystal lattice (defects)
 - \rightarrow weakly ferromagnetic behaviour

Haematite

 α -Fe₂O₃

 $M_{S} = 2.5 \ kA/m$

 $T_N = 680 - 690 \,^{\circ}\mathrm{C}$

 T_M = between -100 and - 13 °C (size dependent)

0

- H_c size dependent
- Soils
- Baked clay
- **Sediments**

- Imperfect antiparallel alignment of spins ٠
- Holes in crystal lattice (defects) ٠

\rightarrow weakly ferromagnetic behaviour

Temperature, $T(^{\circ}C)$

Özdemir & Dunlop 2006

Haematite

• α-Fe₂O₃

- $M_{S} = 2.5 \ kA/m$
- $T_N = 680 690 \ ^{\circ}\text{C}$
- T_M = between -100 and 13 °C (size dependent)
- H_c size dependent
- Soils
- Baked clay
- Sediments

- Imperfect antiparallel alignment of spins
- Holes in crystal lattice (defects)
 - \rightarrow weakly ferromagnetic behaviour

Summary

Magnetic minerals

Origin of magnetism

- Electrons carry a spin magnetic moment
- In crystals with uncompensated spins
- Ordering requires energy gain by spin coordination of electrons in <u>overlapping</u> orbitals.
- Only ions with uncompensated spins in highly eccentric orbitals (*e.g.* 3d for *Fe*³⁺) are possible sources of ferro-, ferri- or antiferromagnetism.

Diamagnetism ($\kappa < 0$)

- external magnetic field H causes distortion of electron-orbit (Lorentz force)
- precession of orbital plane around *H* direction (*Larmor-precession*)
- a second magnetic moment is created but opposite to H (Lenz rule)
- precession frequency depends on H
- in all materials
- weak, best observed in materials without a resulting spin momentum

Summary

Magnetic minerals

4 uncompensated moments

non-overlapping atomic orbitals

H = 0

thermal energy randomises spin alignment hence spin alignment depends on temperature

Temperature T

SAGA

Magnetic minerals

Ferromagnetism ($\kappa >> 0$)

- in materials with <u>unpaired spins</u> and <u>overlapping atom orbits</u> (close packing)
- electrons are exchanged between iron atoms either directly (ferromagnetism) or indirectly via interjacent oxygen atoms (superexchange – *e.g.* antiferromagnetism, ferrimagnetism)
- $\hfill\square$ materials exhibit a spontaneous magnetisation $\hfill M_s$ after field removal, due to uncompensated spin moments

Magnetic iron minerals

Basics of magnetism

Magnetite (Fe ₃ O ₄):	$M_{\rm s} = 480 \text{ kA/m}, T_{\rm c} = 580 ^{\circ}\text{C}, T_{\rm v} = -150 ^{\circ}\text{C}$ ferrimagnetic, in soils, bacteria, lacustrine/marine sediments, often partly oxidised, also in human and animal tissue, combustion product
Maghaemite (γ-Fe ₂ O ₃):	$M_{\rm s} = 380 \text{ kA/m}, (T_{\rm c} = 590-675 \ ^{\circ}\text{C})$ ferrimagnetic weathering product (fully oxidised magnetite, no Fe ²⁺ in lattice), common in soils and sedimentary rocks, combustion product
Haematite (α-Fe ₂ O ₃):	$M_{\rm s} = -2.5$ kA/m, $T_c = 675$ °C, $T_M = -15$ °C, imperfect antiferromagnet (weakly ferromagnetic) common in soils and sediments, red beds
Pyrrhotite (Fe ₇ S ₈):	$M_{\rm s} = ~80 \text{ kA/m}, T_{\rm c} = 320 ^{\circ}\text{C}$
Pyrrhotite (Fe ₉ S ₁₀):	ferrimagnetic above 200 °C, $T_c = 265$ °C in sedimentary metamorphic rocks, sulfide ores
Greigite (Fe ₃ S ₄):	$M_{\rm s}$ = ~ 125 kA/m, $T_{\rm c}$ = ~330 °C forms in aquatic enivronments (and soils) under unoxic conditions, in bacteria
Goethite (α-FeOOH):	$M_{\rm s} = ~2$ kA/m, $T_{\rm c} = 120$ °C imperfect antiferromagnet (weakly ferromagnetic), in soils and acquatic environments, lateritic weathering product
Siderite (FeCO ₃):	$T_{\rm N} = -235 \ ^{\circ}{\rm C}$ (antiferromagnetic, but paramagnetic @ room temperature) marine lacustrine, in soils probably

Properties of some magnetic minerals

• Formation of magnetic minerals

Magnetic characterisation methods

Examples

Formation

Dead vegetable and animal matter is decomposed by soil animals and microorganisms (such as worms, mollusca, bacteria, fungi), altered and incorporated into the soil. -> humification of organic matter.

Source material and products of weathering/humification are transported on and in the soil, either as solid particles or in solutions.

The soil constituents are then connected by cementing material, which is partly of biologic origin. This causes a new texture and granularity.

Formation

Pedogenesis = progressive transformation of bed rock into a soil

Formation

Formation

Simo Spassov

Formation

Baked materials

Formation

Formation

Source material contains "non"-magnetic iron

Magnetic minerals are generated during prolonged heat exposure at different p_{O_2}

Phylloscilicates (e.g. clays, micas, chlorites) Murad & Wagner 1998

- 1. Loss of physically adsorbed or intercalated water at 100-200 °C
- 2. Oxidation, where applicable, of divalent iron
- 3. Loss of structural hydroxyl at intermediate higher temperatures
- 4. Final structural breakdown combined with the formation of new phases close to 1000 $^{\circ}$ C
- 5. Vitrification.

Formation

Tournassat et al. 2015

FIGURE 1.1 From top to bottom: tetrahedral and octahedral sheets, TO (Kaol) and TOT layers (*cv*-Mt), and clay mineral particles. The Kaol layer structure was taken from the COD database (Gražulis et al., 2012). The *cv*-Mt structure was taken from Tsipursky and Drits (1984).

Formation

Source material contains "non"-magnetic iron

Magnetic minerals are generated during prolonged heat exposure at different p_{O_2}

Iron minerals

Murad & Wagner 1998 (and references therein)

Dehydroxylation under	200 - 320°C	310-485°C
oxidising conditions	$2 (\alpha, \gamma)$ -FeOOH $\rightarrow \gamma$ -Fe ₂ O ₃ + H ₂ O	$\rightarrow \alpha - Fe_2O_3$
reducing conditions	$Fe^{3+} + e^- \rightarrow Fe^{2+}$	$\rightarrow Fe_3O_4$

Presence of Al and Ti in clay can result in substituted maghaemite and haematite.

Formation

Source material contains "non"-magnetic iron

Magnetic minerals are generated during prolonged heat exposure at different p_{O_2}

Formation

Properties of some magnetic minerals

• Formation of magnetic minerals

Magnetic characterisation methods

Examples

Loops RT LT, Day, exchange bias, Pasha, FORC nur am rande Coercivity spectra analysis nur am rande

- H_c coercive force
- H_{cr} remanent coercive force
- M_s saturation magnetisation
- M_{rs} saturation remanence

Ratios $M_{\rm rs}/M_{\rm s}$ and $H_{\rm cr}/H_{\rm c}$ are indicators of the magnetic grain size

Hysteresis

Characterisation

Hysteresis

Characterisation

<u>Hysteresis</u>

Hysteresis

Characterisation

Magnetic hysteresis

Definition & Units

- $\vec{M} = \kappa \vec{H}$ H[A/m] and $M[A/m] \rightarrow \kappa$ dimensionless, refers to volume
- $M_i = \kappa_{ij} H_j$ 2nd degree Tensor

For practical use

Mass susceptibility
$$\chi_{mass} = \frac{\kappa}{\rho} = \frac{\kappa}{m_{sample}} V_{measurement}$$
 $[m^3/kg]$
Molar susceptibility $\chi_{molar} = M \cdot \chi_{mass}$ $[m^3/mol]$

Characterisation

DC susceptibility

Initial and high-field susceptibility are determined by fitting the M(H) curve.

General practice κ_{low} obtained from AC measurements, only κ_{hifi} used for interpretations.

Characterisation

AC susceptibility

from Nikolo, Am. J. Phys. 63, 1995

U measured with a phase separating lock-in amplifier $\rightarrow \kappa'$ and κ'' can be separated.

Characterisation

AC susceptibility

Real part

• Related to <u>reversible</u> magnetisation processes.

- Absorption of energy during magnetisation.
- Stays in phase with the driving oscillating field,
- Reflects the sensitivity of material to applied magnetising field *H*. "Magnetisability"
- is positive for antiferro-, ferro-, ferri-, paramagnetics
- is negative for diamagnetics

Characterisation

Imaginary part

 $\chi^{\prime\prime}$

AC susceptibility

- Due to <u>irreversible</u> magnetisation changes
- Dissipation of energy during magnetisation, e.g. due to:
 - irreversible domain wall movements
 - relaxation of SP grains
 - Spin lattice relaxation in paramagnets
 - eddy currents in conducting materials
- May be zero or positive, but never negative.
- $\chi'' < \chi'$
- If $\chi'' = 0 \rightarrow \chi_{ac} = \chi_{dc}$

Characterisation

AC vs. DC susceptibility

molecular Fe-Nb ferromagnet with a Curie temperature well below room temperature

Instruments measuring κ_{AC}

Producer	Т	H_{ac}	f	H _{DC-bias}
	[K]	[<i>A</i> / <i>m</i>]	[kHz]	[m <i>T</i>]
Bartington	73-1123	0.2	0.456 & 4.56	-
Agico	81-973	5-750	0.976, 3.904, 15.6	-
QD	0.5-1000	8-800	0.0001-1	0.5-7000
	Bulk, aniso	tropy, χ()	T), $\chi(f)$, $\chi(H)$	
	,			

KLY

www.agico.com

Characterisation

Instruments measuring κ_{AC}

	Producer	Т	H_{ac}	f	H _{DC-bias}
		[K]	[<i>A</i> / <i>m</i>]	[kHz]	[m <i>T</i>]
	Bartington	73-1123	0.2	0.456 & 4.56	-
2	Agico	81-973	5-750	0.976, 3.904, 15.6	-
	QD	0.5-1000	8-800	0.0001-1	0.5-7000

(SAGA rnaTS) BaPtaguer 29-31 nHa2022 and Rock Magnetism

Instruments measuring κ_{AC}

[<i>K</i>] Bartington 73-1123	[<i>A</i> / <i>m</i>]	[kHz]	[m <i>T</i>]	
Bartington 73-1123	0.2			
Agico 81-973	5-750	0.456 & 4.56	-	
QD 0.5-1000	8-800	0.0001-1	0.5-7000	
Not-qd.de DC in function of T , H , Anisotropy in function of H AC χ', χ'' in function of T , H , f				

magnetic mineral identification

- small fields < 800 A/m (in reversible region of hysteresis loop)
- Initial slope changes are different for different magnetic minerals

Field dependence

Low temperature magnetisation

40 $[mAm^2kg^{-I}]$ 30 Magnetic properties in function of distance 20 $M_{1\,mT,20\,K}$ $6 - 8 \, cm$ 10 4 – 6 *cm* 2 - 4 cm0-2 cm0 50 100 150 200 300 250 Temperature [*K*] TUnpublished data from Ech-chakrouni & Spassov (2019)

Characterisation

Low temperature magnetisation

Characterisation $[mAm^2kg^{-l}K^{-l}]$ 0.3 Fully oxidised Partially oxidised magnetite = 0.2 maghaemite magnetite $T_V = 119 K$ dT0.1 **6 – 8** *cm* 4 – 6 *cm* 2-4 cm $T_V = 102 K$ 0-2 cm0.0 50 150 100 200 250

Temperature T [K] Unpublished data from Ech-chakrouni & Spassov (2019)

 $d(M_{1\,mT,\,20\,K})$

<u>ARM</u>

Characterisation

Anhysteretic remanent magnetisation

Steady field magnetisation and alternating field demagnetisation at once

Normalised SIRM vs remanent coercive force

Characterisation

Grain size & concentration

From Evans & Heller (2003)

Thermal demagnetisation of IRM

From Evans & Heller (2003)

Thermal demagnetisation of IRM

Characterisation

Table 5.1 Maximum coercivities and blockingtemperatures for some common ferromagnetic minerals

Ferromagnetic mineral	Maximum coercivity [T]	Maximum blocking temperature [°C]
Magnetite	0.3	575
Maghemite	0.3	≈350
Titanomagnetite (F	$e_{2} = Ti_{0}O_{4}$:	
x = 0.3	0.2^{-x}	350
x = 0.6	0.1	150
Pyrrhotite	0.5 - 1	325
Hematite	1.5 - 5	675
Goethite	> 5	80–120

Lowrie (2007)

Thermal demagnetisation of IRM

Characterisation

1. Magnetise in strong field, e.g. 2 T,

2. demagnetise with alternating fields

Decay of IRM

Remanent magnetisation decays over time

$$M(t) = M_0 e^{-t/\tau} + M_{eq} (1 - e^{-t/\tau}) \quad \text{for SD grains}$$

$$\begin{split} M_{eq} &= M(t \to \infty) \\ M_0 &= M(t=0) \\ \tau &= f(V, M_s, H_k, H_0) \text{ relaxation time} \end{split} \begin{array}{l} H_k &= \text{micro-coercivity assuming shape} \\ H_0 &= \text{external field} \\ V &= \text{lognormal distribution of volumes} \end{split}$$

Small grains, *e.g.* 30 – 40 nm magnetite/maghaemite or haematite loose their remanence quickly

Larger grains, i.e. single domain and multidomain do practically not loose their remanence.

Decay of IRM

Characterisation

