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PART 1

INTRODUCTION /
fo. fire effects on the environment /



WHAT IS FIRE

Fire: exothermic chemical process of combustion involving the oxidation of a fuel source at a high temperature.
During the combustion energy is released and produces heat and light.

4 elements must be present for the fire to exists:

CHEMICAL
REACTION

\

FIRE TETRAHEDRON

~If there is not enough oxygen available during a chemical reaction, in

" Euels can be solids, liquids or gases. During the chemical reaction that produces fire,
fuel is heated to such an extent that it releases gases from its surface.

»~~ Gases are made up of molecules. When these gases are hot enough, the molecules |
them break apart and fragments of molecules rejoin with oxygen from the air to
new product molecules — water molecules (H,O) and carbon dioxide molecules
(CO,) — and other products if burning is not complete

combustion occurs, and products such as carbon (C) and carbon mopgkide (CO), plus
water and carbon dioxide are produced. Less heat energy is releaséd during
Incomplete combustion than complete combustion.



FHRE EFFEC’H’S ON TFHE ENV/M@MMEMF Fires and the Climate Feedback Loop

Fire is recognized as a global
phenomenon

More than 307% of the land surface - A |
IS S)Ubﬂ%‘@t@d to a Sﬂgnﬂif:ﬂ(@@ﬂt revsrcamol
frequency of fires | 3 F o ~

Wildfires play important role in
shaping Earth's climate




WILDFIRE characteristics

The intrinsic characteristic of fire is heat that is released
during the process of combustion

Fire intensity related to soil properties is defined as the
maximum tfemperature recorded at a certain point and the
time that this temperature persists, expressed in °C/s
(Ubeda,1998)

Ash (the residue produced by wildfire) can be used as an
indicator of fire severity since it is the product of the
combustion of biomass.

The color of ash produced under laboratory conditions can
be compared with the ashes generated in wildfires to
estimate fire intensity.

Temperature (°C)

Fig. 1. Example of different ash colors produced under laboratory conditions using leaf
litter from two locations (Spain and Portugal) with cork oak (Quercus suber) forest

(Ubeda et al., 2009).

Quercus suber
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FIRE EFFECTS ON SOIL PROPERTIES

S\

Recolonization by
soil organisms

Leaching of Variation in nutrient
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Source: Boerner, Ralph E.J. 2006. Soil, fire, water, and wind: how the elements conspire in the forest context. In: Dickinson, Matthew B., ed. 2006. Fire in eastern oak
forests: delivering science to land managers, proceedings of a conference; 2005 November 15-17; Columbus, OH. Gen. Tech. Rep. NRS-P-1. Newtown Square, PA: U.S.
Department of Agriculture, Forest Service, Northern Research Station: 104-12



PART 2

THERMAL INFLUENCE

on the soil/clay - mechanisms and /
effects /



IRON (HYDR)OXIDES AND THE COMMON PATHWAYS OF FORMATION AND
TRANSFORMATION IN THE ENVIRONMENT

Lithosphere Inter-sphere Hydrosphere
Iron(II ;
Iron(II) Iron(II) (')d( ) Iron(Il) || Magnetite Fe(I) o
carbonates || silicates || 0X1d€ wih sulfide | |(Fe>Fe3,0,)| FH—* . ——
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Pedosphere l
\ 4
4 | > Maghemite (y-Fe*,0,) —
v | Feam | g
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‘ Aqueous ion . Hexagonal crystal —» Oxidation with or without carbonate Hydration with organic matter decomposition
. —— Dehydroxylation at 200-400 °C = Thermal transformation at 650 °C
- Amorphous solid — Oxidation — Nucleation — Precipitation — Reduction = — Dissolution Complexation

Source: Han et al., 2020, Environmental Chemistry Letters (2020) 18:631-662



IRON (OXY)HYDROXIDES HIGH TEMPERATURE TRANSFORMATIONS

1

Soaking period .
1, Al 4
r '
AN
\Cooling period

Transformation path depends on:

EHeating period

Temperature (°C)
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The most prominent Fe-(oxy)hydroxides property is the changing redox stafe

The chemical reaction of electron transfering between two species
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PART 3

MAJOR IRON (@X)HYDROXIDES AND LAY

MINERALS /
= behavior upon heating, /



HIGH TEMPERATURE TRANSFORMATION PATHWAYS OF MOST COMMON EE-(OXY)HYDOXIDES
Feidnyeliite FegOnlgdn,©

No C source T (°C) 323 370 399 A 430 449 700 999
Phases ——Fh, Hm?—— —— Fh, Hm —— Hm
1% glucose T (°C) 301 3254 372 503
a(um)  0.8320 (1) 0.8343 (5)  0.8348 (4) 0.8357 (4)
Phases Fh, Mh, Hm Mh/Mt, Hm
2% glucose T (°C) 291 A 329 504
a (nm) 0.8358 (9) 0.8355 (5) 0.8360 (7)
Phases Fh, Mh/Mt, Hm Mh/Mt, Hm
5% glucose T (°C) A 372 501
a (nm) 0.8369 (6) 0.8364 (7)
Phases Mh/Mt
10% glucose T (°C) 283 A 373 505 999 1000*
a (nm) 0.8360 (2) 0.8372 (7) 0.8367 (7) 0.8393 (6) 0.8394 (6)
Phases Fh, MiYMt, Hm? — Mh/Mt — — Mh/Mt, Hm? — Mt, Hm, Wt ——
20% glucose T (°C) A 376 999
a (nm) 0.8379 (7) 0.8401 (8)
Phases — Fh, Mb/Mt — — Mt, Hm, Wt —

Fh = ferrihydrite, Hm = hematite, Mh = maghemite, Mt = magnetite, Wt = wiistite.
7 indicates that identification of the phase is uncertain.

A indicates the approximate temperature of a DTA exothermic peak maximum. ) a
* indicates that the top 2 mm of sample (not shown) differed from the remainder, which is shown in the table. o 0.00 Hematite a-Fe203 B
Numbers enclosed in brackets indicate the number of lines used to calculate unit-cell edge lengths. & t A
~ U Y = " T = ey o B
2 . Maghemite | Rodolicoite  °; ! Grattarolaite
; w £ e = j
Source: Campbell et al., 1997, Clay Minerals (1997) 32, 615-622 SE 58 L2 ) o chs . {__Fe,PO7
: B » A o |/
a3 dehydration NN, dwﬁf I g
<5 0.50 reactions B R ¢ ¢ ¢ 4
g .E 3 A ; P
&£ 1.00 ;
400 500 600 700 800 900 1000

temperature/ °C

Schematic presentation of temperature ranges of phase stability during ther
transformations of P-doped ferrinydrite (source: Pieczara et al., 2020, Materic



24 Fe3sO4 +6 CO2+ 4]
H20

72 a-FeOOH +
Ce(H20)5
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Source: Ponomar et al., 2020, Advanced Powder Technology, 31, 2587-25%96
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Gehring and Hofmeister, Clays and Clay,

inerals 42, (4), 409-415, 1994.



maghemiteRaEEN O
thermally unstable mineral
grain-size dependent behavior upon heating:

nanoparticles (30 — 80 nm)

crystalline
well developed particles (superparamagnetic) g—F6203
~ 300-400°C M higher transition T A OECIN . .
N .y . depending on grain size infermediate polymorph to
grain-size due to doping ions hemanim
i e-Fe,O :> - Ms = 15-25 Am2/kg
o F‘6203 . Z— Tucek et al., Chem. Mater. 2010,
coarser grains than initial mht 22 24, 6483-6505

Machala et al., 2011, Chem. Mater. 2011, 23, 3255-3272

neleneiie FegOy,

4

___________________________

e 1{ Above 600°C | Further oxidation reduction micro-sized
oxidation in vl : o, Mgt (200-350
Cﬂr 0% 5 i 4@9""'62-('\0 (HQ/NQ nm)
: 1 0’ - Fe2t+ €9 ot
‘ga Fe;0, Fe* E Feg, 'e_‘ Fe;0, ; : 3 g G S)
X < : ""_Fé,d,l.‘, 7 two-steps reduction startjrg at T>~450°C:
+Fe,05F6,0, : L
Stage 1 E Stage 2
Fe;0,+0,—7-Fe,05°Fe;0, : v-Fe,05-Fe;0,+0, — a-Fe,0;
v-Fe,05-Fe;0, —vy-Fe,0; — 0-Fe,0; : Fe;0,+0,— a-Fe,0; Fe3o4 9 Feo 9 Fe

Source: Zhang et al., 2021, steel research int. 2021, 92, 2000687



CLAY MINERALS AND FIRING

PHYLLOSILICATES
y é dehydration
Kaolinite (1:1)
Nonex ive sz . .
@ e @ é oxidation
e
HEATING :
© Oxygen ~~ é dehydroxylation
: Silicon @ Oxygen, Hydroxyl
@ Al i \v/< o e
i || é decomposition
and formation of new phases
lite (2: Vermiculite (2: Smectite (2:1 hlorite (2: w T .
I\llorzgfp(aﬁs:v)e ermfil;r]atteel(yz Y me(i:-ligrﬁy( ! cNor?g:;ésﬁvl) ‘7‘\ VITrIflCOTlon
Expansive Expansive /

e | Pyrite
L) decomposition
= +—> 4

Wategmotlfcules 2 o 38;)” :|2° Low-volatile
and cations Waatgrdrg::[e;:;les ‘6‘ om US. ion O Ig y Organics New Crysta”ine
P’ volatile organics combustion h f ti
w < >« phases formation
220 450 700 850
100 200 300 400 0 600 700 800 900 °C
Structure of Clays 5 B P = 5

reate: y Jos ory for www.sollsurvey.org
S Free water evaporation/ Clay minerals dehydroxylation
= clay minerals dehydration

o c . . . (=] 225 450 650 850
X\ Clay particles: particles with a particle size of less than 20 um = < >
w Hydroxide Carbonate
X2 [ron is present also as structural form on clay mineral and decomposition SCppestion

may occur in both the octahedral and tetrahedral sheets of 1:1
and 2:1 clay minerals Source: Hanein et al, 2022. Materials and Structures (2022) 55:3



GOING COMPLICATED: CLAY + IRON (HYDR)OXIDE MIXTURE

»= Clay materials can contain up to 15 wt. % of iron oxide phases

= Contents above 5% Fe,O; promote a reddish or pinkish colour of clays /

w» Due o the high surface reactivity, clay minerals can affect the transformation proces
and product features (e.g., size and morphology) of ferrihydrite.



KAOLINITE + IRON OXID

Kaolinite

the most often used clay
mineral in pottery
production

Source: Wei et al., 2011. Soil Sci. Soc. Am. J. 75:45-55
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MONTMORILLONITE + FERRIHYDRITE: heating in air

Aggregation

e |
e el L
999

> ] -.',‘,. . ".v.. '-..
,*E J.J"':.. ,,"‘;"., i
. "'—.—". et 97!

% Montmorillonite * Hematite

TS

Source: Yan et al.,2021. Applied Clay Science 202, 105962

Montmorillonite disperses Fh and inhibit the
formation of large aggregates in the mixing
and heating process.

Montmorillonite could interact with Fh by
the formation of Si—-O—-Fe and Al-O—-Fe bonds.

The coexisting Montmorillonite significantly
decreased the size of Hem particles under
high-temperature conditions.



Maghemite nanoparticles in Silica matrix: heating products

8‘F6203:
High temperature transformation product of
maghemite nanoparticles, dispersed in Si-matrix

e-Fe,O5 found in archaeological
ceramics fired at very high temperatures

L3
L

TEM images of e-Fe, O, crystals from ceramic sample from Japan
(Kusano et al., Chem. Mater. 2008, 20, 151-156 )

(a)

nanoparticles in a supporting medium (e.g., silica matrix)

N\

>300°C  o-Fe,0,

(d) coated nanoparticles

y-Fe,0, >600°C  o-Fe,0,

big crystals and/or bulk structures

(e)

Source: Machala et al., 201 1. Chem. Mater. 23, 3255-3272



THERMAL TRANSEORMATIONS IN ROCK-FORMING Fe

Heating in air:

PYRITE (FeS,) TRANSFORMATIONS

2FeS, + 51/2 O, — Fe,0, + 450,
3 Fe,0, +8 O, - Fe,0, + 6 SO,

Reaction products:. hematite,

magnetite
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PART 4

WILDFIRES and magnetic expression,

FIRE SIGNATURE im natural soils. /
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Wildfires and effects on magnetic properties of soil
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Experimental forest firing — major findings

from Santin et al. (2016, Geoderma, 264, 71-80)

Forest floor surface

10¢

(b)

0 200
Time (s)

Forest floor/rineral sail
interface

from Bodi et al. (2014, Earth Sci. Rev., 130, 103-127)
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Temperature behavior on the surface and at the first centimeters of depth of a burned mollic topsoil
under contrasted soil moisture content (D. Badia et al. / Science of the Total Environment 601-602 (2017) 1119-1128)

e ON OFF Dry soil " Wet soil
600 4 600 1

—Surface ~—Surface

—1em 1 1cm

500 A
2cm 2¢em

500 A

—3cm —3cm

ON OFF

400

300 1

200 1

100 1

0 5 10 15 20 25 30 35 40 45 50 55 60 0

Time (min) 0 5 10 15 20 25 30 35 40 45 50 55 60

Time (min)

- Tmax and the heating duration are significantly lower in the wet soil than in air-drjgd soil in the
first and second centimeters of depth
- soil heating is slower and cooling faster in wet soils as compared to dry soils



PART 5

ARCHAEOLOGICAL BURNT CLAY:
effects of heating on the magnetic

dgnature /



Evide

humans

From: Jha et al., 2021. Paloeo3, 562, 110151

Compilation of controlled use of fire by the prehistoric humans from major archaeological sites around the world.

nce for first controlled use of fire by

Country Archaeological site Type of evidence Age Prehistoric phase boundary References
India Belan valley, Uttar Pradesh Macroscopic charcoal ~55-50 ka Middle Paleolithic Present study
Belan valley, Uttar Pradesh Hearth (n = 11) ~18-10 ka Epi-Paleolithic to Late Misra (2002)
Mesolithic
Pratappur, Odisha Charcoal ~17.9 ka Late Upper Paleolithic Patnaik et al. (2019)
Karnool Cave, Andhra Pradesh Hearths (n = 1) ~17.4 ka Late Upper Paleolithic Nambi and Murty (1983)
China Zhoukoudian Burnt stones, bones and charcoal ~462 + 45 ka Late Lower Paleolithic Weiner et al. (1998)
fragments
Israel Gesher Benot Ya‘aqov Burnt seeds, wood, and flint ~790 ka Lower Paleolithic Goren-Inbar et al. (2004)
Tabun/Hayonim Oumm Qatafa Hearths, Charcoal ~~200-100 ka Early Middle Paleolithic Mercier et al. (1995)
Qesem Cave Burnt bone, heated soil lumps, wood-ash ~400-200 ka Late Lower Paleolithic Karkanas et al. (2007)
South Africa Pinnacle Point Burnt tools ~164 ka Early Middle Paleolithic, Brown et al. (2009)
Wonderwerk Cave Burnt bone and ashed plant -~1.0 Ma Lower Paleolithic Berna et al. (2012)
Swartkrans cave Burnt bones ~1.0-1.5 Ma Lower Paleolithic Brain and Sillent (1988)
United Beeches Pit, West Stow Burnt flint and bones ~414 = 30ka Late Lower Paleolithic Preece et al. (2006)
Kingdom
Germany Schoningen Burnt bone and sediment ~500 ka Late Lower Paleolithic Thieme (1997)
Bilzingsleben Burnt bone and sediment ~370 ka Late Lower Paleolithic Mania and Mania (2005)
France Grotte XVI, Dordogne Ash and burnt bones ~60 ka Late Middle Paleolithic Karkanas et al. (2002).
Spain Bolomor Cave (Valencia) Hearth ~228 £ 53 ka Early Middle Paleolithic Peris et al. (2012)
Australia Lynch’s Crater (North Charcoal ~45 ka Late Middle Paleolithic Turney et al. (2001)
Queensland)
Kenya FxJj20, Koobi Fora Burnt artefacts ~1.6 Ma Lower Paleolithic Gowlett et al. (1981)
Indonesia Liang Bua, Flores Ash and charcoal ~41 ka Late Middle Paleolithic Morley et al. (2017).
Malaysia Great Cave of Niah, Sarawak Charcoal ~43 ka Late Middle Paleolithic Stephens et al. (2005)
Philippines Erne and Dalan Serkot Caves Charcoal ~26 ka Early Upper Paleolithic Mijares and Lewis

(2009)




Detecting conirolled use of fire by humans

» most ancient use of fire — in nomadic societies: occasional use of open air fireplace may destroy the
charcoals, thus problematic to find definite evidence

> progressively less nomadic life-style (e.g. larger population) — more intensive site use — better opportunity
for charcoal preservation

> Major criteria for reliable detection of fire use by ancient humans: @ fireplaces/hearths in association with
burnt bones, sediments, etc; @ in situ presence of wood ash in a cave where trees are not normally found; ©
burnt bones and macroscopic charcoal associated with lithics in a stratigraphic unit/layer; @ presence of burnt
materials (e.g., charcoal, bones, stones) dispersed in a depositional context

Fire - accepted as an essential component of human life for:

_—

development protection from animals advancement of tools
of resources and cooking food preparation technology

4



ARCHAEOLOGICAL BURNT CLAY

1. Remains from settlement’s destruction by fire (conflagration event)

“burned house horizon” — uniaue Neolithic archaeological phenomenon in

(after ° it . o Radio
Boyadzhiev | & E NE Rumania g carbon
Calendar . 19%) § o E Moldova d £ Central | vears
Years B.C.| Serbia | Bulgaria | 2 Ukraine Z | Europe [p..
20007 Early Early Early —1600
Bronze Bronze | Bronze
Age MBA Verbicicara Age Age
2000
2500
Vg
ucedol Barly
Baden- Bronze . BadenII| Corded
Kostolac Age VIT| Cotofeni Ware
3000 — [—2300
Middle (Ezero) Pit-Graves /
Eneolithi
neolinic \ Baden 2500
\ (Proto-Bronze) (Boleraz)
Transitional Cernavoda

3500 — 4 Period —2750
Sacuge V| st icheisberg|
1000 3500 Reconstruction of two-storey buildin
(source: Pdl Raczky, 2014, The Oxfq, angook
3500

Stichband
keramik

of Neolithic Europe)

Linear

Band
Keramik [~ 4000
5000
Experimental archaeology;
| Dudesti combustion of a wattle ghd daub house,
5500 | |Houses Vadastra 2006
Koros destroyed by .
conflagration Source: Gheorghiu,2008; Documenta
| Proto- Praehistorica XXX¥, 167-178
6000 Proto- (Monochrome Kbrés
Starcevo Neolithic)

500 —
Sfevc:r;soovic:, 1997, JOURNAL OF ANTHROPOLOGICAL ARCHAEOLOGY 16, 334 — 395



The Trypillia megasites of Ukraine are the largest known settlements in 4th millennium BC in Europe

The largest reaches 320 ha in size — Nebelivka megasite

Source: Chapman et al., 2019, Front. Digit. Humanit. 6:10.

assembly house //E/ quarter

7 i i 2
/7/ :ﬁ!g&i%/ch;%?lpﬁbimy bumnt structures (100 | probable structures
/4

palaeochannel

N

possible kiln sites
unburnt structures III identified in 2014

Major archaeological finds - burnt daub with imprints of wood

» Numerous burnt houses, including two-storey
> large public buildings (‘mega-structure’, “temple”)
> fortifications

Source: Trypillia Mega-Sites and

European Prehistory 4100-3400 BCE
Eds. J. MdUller, K. Rassmann and
Videiko 2016. Routledge (Taylo
Francis Group), Themes in
Contemporary Archaeolo
European Association of
Archaeologists, pp.30 : H8-1-910-
52602-6.




Neolithic site Mursalevo-Deveboaz from Bulgaria 5700 - 5000 BC)

Area 20 000 m2, ~ 60 houses

Rock-magnetic study on @
collection of 445 samples from
25 houses

Jordanova et al., 2018, Journal of Geophysical
Research: Solid Earth, 123. Art. No 2017JB015190
Hysteresis loops

© Mursalevo Project
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Magnetite / maghemite , Hematite

color dependent magnetic properties of daub

Sample Bc | Ber Ms Mrs Hysteresis || Xz%0
§| No color (mT) | (mT) (mAm?kg) | (mAmYkz) | loop shape
8|13 purple 191| 682 94080 28140 |wwl 4 _
{[11-10 | purple 78| 166 819 48 18552 3 Magnetite SD/PSD
111 | purple 171 339 89326 25899 1
243 purple 198 3559| 67957 68.02 | pot-belly 2
244 | yellow 109] 206 145.67 4527 3
- yellow/light Magnetite SP/SD
{124-12 | brown 68| 434 226.8 292 | wwl 10
Do | e 115 393 173 .45 4927 | wwl 12 | Magnetite/maghemite
4| 24-5 orange-red 105 32.8 241.63 67.22 | wwl 12 SP+SD
17-12 | orange-red 09| 348 433.10 93 14 | wwl 1 Hematite
i 67| 189| 17748 3271 6 Magnetite SD




2, BRICKS

Mud-bricks for construction of houses in the Near East and Eurasia from the Neolithic to modern times
Mud brick - chaff-tempered, sun-dried mechanically formed sediment

Burned mud-brick walls of an Bronze Age site from Crete
Source: Maud Devolder et Marta Lorenzon, « Minoan Master

RECONSTRUCTION OF ENVIRONMENTAL FACTORS

Builders? », Bulletin de correspondance hellénique [En ligne], INFLUENCING THE APPEARANCE OF MUD BRICKS IN
143.1 | 2019, mis en ligne le 01 aoUt 2020, consulté le 16 mars

2022. URL : http://journals.openedition.org/bch/718 ; DOI : ARCHAEOLOGICAL CONFLAGRATION EVENTS
B 10:4000/beh 718 Forget et al., 2015; Journal of Archaeological Science: Reports 2, 80-93

Experimental mud-bricks heated at: 500, 600, 700 and 800°C

In oxidisi

conditions

mud:mortar

P o g




Clay bricks

For the production of heavy clay bricks the raw clay is mined, shaped intfo a brick in an extruder, dried to
evaporate the water, and then fired in a kiln at a temperature typically between 200 and 1050 °C.

The black reduction core in heavy clay ceramics is a typical feature of clay bricks.

Source: Gredmaier et al., 2011, Construction and Building Materials 25, 4477-4486 The following factors determine the extent of black reduction coring in fired clay ware:
Gas movement: OFiring time — a longer firing time can eliminate the black reduction core.

® The oxygen atmosphere during firing. Lack of oxygen promotes the formation of black
reduction cores.

© Iron oxide content in the raw clay.

® Carbon content and burnout or oxidation of carbon during firing

of the raw clay.

OFineness of clay and degree of compaction. Gas exchange and gas development
are different between clay powder and an extruded brick

Fe304 Fe,‘oa
- Ratio of iron to oxygen 1:1.33 -
Carbon fails to oxidise to CO, Ratio of iron to oxygen 1:1.6

CO takes oxygen from Fe, O, leaving Fe, O‘

C02, CO, SO2 and water vapour are gases that develop during firing of clay

Archaeological bricks are normally fired in @
continuous oven-type chamber. The maximum
temperature practically attainable is 1100 °C after
one week of burning (Scalenghe et al., (2015)
Quaternary International 357 189-206).

4)0 min, b) 15 min,
c) 30 min, d)1 h

Source: Forget et al.
2015. Journal of
Archaeological
Science: Reports, 2,
80-93




BRICKS
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> firing produces significant portion of fine
superparamagnetic grains during brick’s production

» brick samples show stable susceptibility behaviour,
suggesting sufficiently high temperatures achieved during
their preparation.

» magnetite/titanomagnetite is the dominant ferrimagnetic
phase

» minor changes on cooling suggest that the magnetic
mineralogy is practically stabilized and no phase changes
occur during heating to 700°C in air.
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3. POTTERY CERAMIC FIRING

. Source: Ther et al., Journal of Archaeological Method and
Source: Gliozzo, 2020. Theory https://doi.org/10.1007/s10816-018-9407-x
Archaeological and ——

Anthropological Sciences
(2020) 12:260 Bonfire

Thér et al.
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S ST S MO open firing (non-kiln firing, bonfire): firing done in a small areaq, 800

sometimes in a pit or depression partially excavated in the
ground, without any permanent kiln structure; characterized by a
short firing cycle, rapid heating rate and irregular temperature,
non-uniform firing (i.e. local changes in redox conditions and
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POTTERY FIRING TECHNIQUES

Source: Guo, (2017): Chinese Archaeology, 17, 179-186

Figure 2 Pottery flring techniques in Africa.
L. Bonfire: 2. Swrounded bonfire; 3. Bonfire with fireproof materials
separating the pots from the fuel; 4. Elevated bonfire; 5. Depression; 6.
Pit; 7. Pit with fireproof materials separating the pots from the fuel; 8.

Oven; 9. Updraft kiln (Quoted from Gosselain 1995:153, Figure 4).

Firina structures

300 400 500 600 700 800 S00 1000

7

I 1

7////

//

2
/
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_
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L a o |

300 400 500 600 700 800 900 1000

Temperatures recorded(°C)

Figure 3 Temperature ranges for the five kinds of firing.

1. Open firing; 2. Open firing with potsherds
covering the pots; 3. Pit firing; 4. Pit firing with
potsherds covering the pots; 5. Updraft kiln firing

(Quoted from Gosselain 1992:246).

= Fundamental difference

between open-air firing structures

and kilns

w=bonfires lack insulation layer

= the clay layer of clay-shell

ovens is very limited in its heat-

preserving effects too

w The structure of pottery kilns
provides temperature insulation
and traps the heat inside.

wthe main particularity of poftt
kilns is the spatial separatio
fiing chamber and stacki
chamber.

w Both characteristics
positive effect on
performance of
pottery.

w Ceramic kilps€an meet three
major regdirements of potters:
controlihg the firing
atmesSphere and temperature
befter, attaining higher
temperatures, and improving
fuel efficiency




Possible oxidation structures of pottery fabric, according to Eramo and Mangone (2019, Physical Sciences Reviews, 20180014)

0 R M
vy o~ - |
ABE - - O — oxidized domo!ns
S R e—— iy R —reduced domains
AR . i M — marbled structure
ey P — E — external
v TN ’-T)o\ | —internal
~_RO2 ROR i Abbreviations from left to right denote
T —  — g sequence from the core to the pottery surface
A
Type of firing Heating-maintenance Cooling ///
more ancient A reducing oxidizing
) B reducing reducing
more recent C oxidizing oxidizing

Source: Daszkiewicz and Maritan, 2016, The Oxford Handbook of Archaeological Ceramic Analysis



The presence of calcite in archeological ceramics

main types of ceramics

calcareous (calcite-rich) ceramics |

carbonate-rich clayey materials have a lower
sintering temperature (~ 800 °C) than carbonate
poor clayey materials, because Ca and Mg act as

fluxes
~675-800°C
calcite CaCO3 - Ca0+C02
~800°C
dolomite CaMg (CO3)2 - CaCO3 + MgO + C0O2

| siliceous (hon-calcareous) ceramics I

Maniatis et al., 1981, Journal of the American Ceramic Society 64

(5), 263-269

the role of Ca content of clays on the transformations of iron-containing phases

firing at 700 ¢ to 1080°C.
The main conclusions are:

(1) The particle size of magnetic iron oxides (mainly hematite) increases
firing at 700°C. At higher firing temperatures, the particle size inc
continuously in noncalcareous clays, whereas it decreases ap
1080°C in calcareous clays.

(2) The total amount of iron in magnetic phases is higher in righcalcareous than in
calcareous clays fired at >700"C. This amount is determjred from the iron oxides
in the unfired clays and/or the contribution of the lattieé iron on firing



Rock magnetic properti

9)

Frequency

[2,]
=]
I

u
=]
1

B
=]

L
=]
1

ka3
o

pottery
N=198

R R R

X [10-8m3/kg)

@
&
¥

o] 2 4 6 8
Xfds

pottery
N=149

10 12 14 More

Pottery fragments fron

Iron Age site
Gluhite kamani
(Bulgaria)

160 <

K (x10° 81D
z B
1 | 1

.
[=1
|

GHK 09 (cooking ware)

=
L

GK 36 (table ware)

e

Kk (x10°8
=
=1
]

60 =
= N, f*\
\ A

/ \‘ L 1

|z 1
d—|—|—r—r—|—‘i—1 Y
200 400 GO0 ] 200 400 GO0

T (°C) T (°C)

Tc ~525°C Tc ~580°C

400

es of pottery fragments

High content of strongly magnetic iron oxides
High relative share of ultra-fine SP partficles

GK 10 (pottery wheel)

=1

400
T (*C)

600

Tc~514°

Magnetite — low Ti-titanomagrietite

identified.




\'i

Po‘r’rery frcgmen’rs from Pliska and Plovdiv (source: Jordanova et al., 2019, Archaeol Anthropol Sci 11:3595-3612)
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Finding of &-Fe,O4 in ceramic pots

Glazed porcelain pots from China

Sciau et al., 2019, techneé [Enligne], 47 | 2019, mis en ligne le 01 juin 2020, consulté le 17 mars 2022. URL : http://journals.openedition.org/techne/1619 ; DOI :
https://doi.org/10.4000/ techne.1619

12" c. AD 17" c. AD

black-glazed Jian (Tenmoku) wares - Dejoie et al., 2014. scientiric REPORTS | 4 : 4941 | DOI: 10.1038/srep04941

- the iron oxide crystallites are precipitated in the

" molten glaze during the cooling phase

Two types of crystals were found - star shape and dendritic shape.

EDX analyses revealed that Fe is the only cationic element present in these
crystals

identified iron oxide crystallites in brown strip (a) as a mixture of a-Fe,O4
(hematite) and the metastable ¢-Fe,O4 phases of nm-size.

the crystallites responsible to the “oil spot™ (b) appearance are mainly -
Fe,O, of larger pm-size

Optical microscopy — surface pattern of two samples



https://doi.org/10.4000/

Magnetic properties of archaeological materials, containing e-Fe,04

Lopez-Sanchez et al., 2017, Geochem. Geophys. Geosyst., 18, 2646-2656

Sample CO - baked clay block used in the construction of a
medieval kiln from Cordoba (Spain)
Sample HEL - modern brick (1906 AD) from Helsinki (Finland)
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The widespread occurrence of
hematite has been found in both
samples, but due to its lower
saturation magnetization it does
not make a major contribution f
the bulk magnetic properties,
These are dominated by th
presence of e-Fe,0O5 and
maghemite in the bak (CO)
and e-Fe,O5; and eithef maghemite
or magnetite in thg brick (HEL).




Lopez-Sanchez et al., 2020, Physics of the Earth and Planetary Interiors, 307, 106554

1. Top region: Fe,0, + a-Fe,0, (magnetically undetected by hysteresis loops)

: . (a) b) 0cmj (c)
Islamic pottery complex from Spain : ‘ -
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2. Intermediate region: y-Fe,0, + e-Fe,0; + a-Fe,0, (magnetically undetected by hysteresis loops)
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o
- formation of Fe;O, and a-Fe, O,/ v-, €-, ' RS T )
3. Bottom region: y-Fe,0; + a-Fe,0, (magnetically undetected by hysteresis loops)

and a-Fe,O4/ y- and a-Fe, O in the
top/intfermediate/ bottom region.

- Maximum &-Fe, O, signature is detected af
2 cm in-depth in the specific case studied.
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M (Am?/kg)

Bricks and fired clay from Neolithic combustion structures from Bulgaria and Russia
Kosterov et al., 2021. Geophys. J. Int. 224, 12561271
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Magnetic minerals detected:

- magneftically soft, having room-temperature coercivity below 50 mT,
- two magnetically hard phases coercivities in the Tesla range.

- These two phases have very different unblocking temperatures:

1) 120-200-C - e-Fe,O4 with substitutions

2) 500-640-C - fine-grained/substituted hematite



A CASE STUDY: MINERAL MAGNETISM APPLIED TO STUDY ANCIENT GOLD-MINING SITE

Jordanova et al., 2020, Geochemistry, Geophysics, Geosystems, 21, e2020GC009374.
https://doi.org/10.1029/2020GC009374

Late Bronze Age open-pit gold mine at Ada Tepe - the oldest known open pit gold mine in Europe
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© gold mineralization is closely related to iron oxides/
hydroxides

© The waste material from the ancient gold mining
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Magnetic parameters: y, xfd%, ARM, IRM, bi-parametric ratios: y apm/xfd. % arm/IRM, IRM/x%
Magnetic mineral identification

Cluster #1: magnetite/maghemite and hematite

Factor analysis of the dataset — 4 clusters

Cluster #2: goethite, hematite, magnetite/maghemite (minor amount)

Cluster #3: magnetite, pyrrhotite, hematite

Cluster #4:. magnetite/maghemite, hemo’rl’re (¢pyrrhotite), goethite (rare

cluster 3 cluster 2 cluster 1

cluster 4
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The combination of the
mineral magnetic approach
with the stratigraphic and
archaeological information
allows deriving much more
detailed and specific
conclusions related to the
overall organization and
characteristics of the
technological chain for th
exploitation of the ore
deposit during the Lat
Bronze age.




PART 6

MAGNETIC SUSCEPTIBILITY METHOD. for evialuation

off mmexinmum, fiking, tempeliature of archaeceologicall
poltery fragments - methodology, advaniages and
drawbaclks




DETERMINATION OF ANCIENT FIRING TEMPERATURE — main principles

|- T

/ ras \

experimental firing of re-tiring ancient pottery
supposed raw clay fragments
EQUIVALENT FIRING TEMPERATURE (EFT) /
T, = EFT

¢ only when identical firing conditions are ysged



After Daszkiewicz and Maritan, 2016

DETERMINATION OF Equivalent Firing Temperature

Static methods

experimental firings of samples
made from a similar body

Dynamic

methods

re-firing fragments of the original sherds

and observing changes in compaosition
and properties

Magnetic susceptibility method for determination of ancient firing t@mp@ratures/

Developed by Rasmussen et al, 2012, Journal of Archaeological Science 39, 1705-1716




BASIC PRESUMPTIONS OF THE METHOD

I. magnetic susceptibility change upon heating is a function of:
- minerals transformation temperatures/thresholds
- grain size of newly created magnetic minerals
2. when ceramic vessel is cooled from its maximum firing temperature, the high temperature mineral assemblage

produced will be preserved over archaeological time.
3. the maximum firing temperature can be reconstructed from the curve of the magnetic susceptibility as a

function of re-firing temperature.
“original firing temperature” (To) - the temperature at which a ceramic product was fired by the potter who made it.

“re-firing temperature” (Tr) - the temperature at which a previously fired product was fired in the laboratory. /

= |If re-firing is carried out using the same conditions as the original firing, then during the course of/
filng at a temperature below the original firing temperature (To) no physicochemical change
should take place in the re-fired ceramic material

& phases “frozen” in the ceramic fabric at the To will not change until the firing process, int
at the To, is resumed

& Exceeding the original firing temperature (Tr>To) during the course of re-firing results |
resumption of thermal processes in the initial clay composition

& the temperature at which changes occur also depends on firing atmosphere apd time, the result
of re-firing analysis is referred to as the equivalent original firing temperature T




ORIGINAL METHOD DESCRIPTION

N2

SAMPLE

~
* pottery sherd selected
* dried at 120°C for 24h
* cooled
/

<

INI

casurcimen

* Weight (g) (10 mg - 5g)

* Magnetic susceptibility (k) - kappabridge/meter
* 4 single K measurements - averaged

« Empty holder signal subtracted

HEATING

Heating in a muffle furnace with good accuracy of T-control

First heating T = 200°C for 24 h, cooling down to room T

Measurements of K

Temperature step is set to 202C up to 10002C

Soaking time - progressively decreasing with increase in T - at 10002C - 30 min
Measurements of K after each heating step

/




DATA PROCESSING

1. Construction of K-T graphs
2. calculation of the first derivative of Kwith T
3. plotting K(T) and (dK/dT)2

T'max is defined as the temperature of the
sudden discontinuity in K(T) and (dK/dT)

= The method is validated through
experimental firing and subsequent re-firing
of clay samples

& uncertainty of the method is determined as @
square sum deviation of the fired and the
experimentally determined firing temperatures
and is estimated to be £25.8 °C.

Magnetic susceptibility ()(10"‘1 Sl-units) Magnretic susceptibility (x1 0* Sl-units)
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CONSTRAINTS OF THE METHOD

Laboratory re-firing is typically conducted in air (oxidizing conditions)

For ceramics which were originally fired under different conditions (reducing or partial
oxidizing atmosphere), the Teq value will be affected by this change in atmosphere
between the original firing and re-firing.

Fragments of gray pofttery (originally fired in a reducing atmosphere), showed Teq values /

lower than those fired in air with a maximum of 70°C (Daszkiewicz and Maritan, 2016, The Oxford
Handbook of Archaeological Ceramic Analysis)

Archaeological pottery fragments may be suffered alteration processes during burial.

Temperature gradient in a pottery kiln is of the order of £50°C.
— Teq determination with the same accuracy is acceptable.



Examples of case studies f@p@ﬂj ation of Tmax determined by

mJ@gnJe’m c susceptibility
@@WERVI INSIGHTS INTO POTTERY PRODUCTION

1. Bronze Age pottery from Turkey (Karacic et al., 2016, Journal of Archaeological Science: Reports 9, 599-607)

Samples collection: 62 Sherds from the LB IIA level at Tarsus-GdzlUkule, 3 sub-groups

Karacic et al. / Journal of Archaeological Science: Reports 9 (2016) 599-607

S S Tmax determined using magnetic susceptibility method
Data presented as histograms for each group
5 d | | EE |I Statistical freatment (average, st.dev.)
888828¥R88885¢%¢%8 F33323¥R8883328
= SUbgrou‘;:;O:ig;iewation =59.6°C = n=19 — Etz\ff{fi‘iewaﬁon =47.8°C . . . .
; : I ? bi-modal distribution of Tmax : 1) 740 °C and 2) 800 °C
8 88.88 Conclusion:
T e T mmaees | the potters consistently achieved two different mdximum firing
E. Open Vessels F. Closed Vessels

temperatures:
— the pottery workshops used two different
— the potters may have employed two different types of fuel

=3
8 & 32 R 2
© o 9 N <
—— Normal distribution Average = 781.9°C —— Normal distrib Average = 782.9°C
n=43 Standard deviation = 67.8°C n=14 Standard deviati 38.5°C
p=0.1410 p=0.0091




2. Pottery from Pliska and Plovdiv (Bulgaria) (Jordanova et al., 2019, Archaeol Anthropol Sci, 11, 3595-3612)

pottery - Plovdiv b)

ottery - Pliska a)
4 - RS 4 Color measurements
3.5 " A Magnetic measurements
M .9 b = 3
g 5 5 v @ cooking 225 . @ serving
= o - M serving 5 2 vl : Moooking
= e : ® Atiles )
e y ,:‘J ch 1 M9 magnetic parameters could be
- 23 :
o ¢ o . regarded as linked to the color
D . )
0 , , 0 ‘ : : saturation of the burnt clay
400 600 800 1000 400 600 800 1000
Tfll('(o(‘) Tfue(o(—‘)

»>linear relationship between the estimated maximum firing temperature, and the value/chroma ratio found

»>‘“‘chroma” generally reflects the amount of the secondary Fe oxides (e.g., produced during heating) in

burnt clay and heated soll
»>"“value” could be related to the “amount of black”.
Therefore, the ratio value/chroma may be considered as an index of the degree of conversion of

magnetite into hematite during progressive heating to higher temperatures.

» parameters of the linear regression are different for pottery samples from different sites — the method
could be applied for clay source discrimination
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Neolithic site Mursalevo-Deveboaz (Bulgaria) (Jordanova et al., 2018, Journal of Geophysical Research: Solid Earth, 123 (4), 2522-2538)
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SUMMARY

»~ Fire significantly affects all Earth’'s compartments, especially soil and ancient settlements

# Iron-containing minerals is soil/clay undergo critical thermal transformations upon heating/burning

~ Environmental magnetic techniques provide sensitive tools for monitoring those changes

»~ Characteristic fransformation temperatures of iron (oxy)hydroxides serve as identification tools in rock-magnetism

~ Archaeological finds of burnt clay store important information on the firing conditions and processes which can

be recovered by rock-magnetic measurements |/
~ Magnetic enhancement of fired clay materials is due to the presence of: magnetite, maghemite, hematite of %
varying grain size from SP to PSD-MD /

»~ Firing atmosphere is one of the most important environmental parameters which influences magnetic properties
of fired clay materials

~  Magnetic susceptibility method for retrieving the maximum firing temperature of archaeological ceramics and

4
THANK YOU FOR YOUR ATTENTION!!!

burnt clay provides sensitive estimate of the ancient firing conditions
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